Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7354, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548769

RESUMEN

Immune nutrition is currently used to enhance fish health by incorporating functional ingredients into aquafeeds. This study aimed to investigate the connections between tryptophan nutrition and the network that regulates the communication pathways between neuroendocrine and immune systems in European seabass (Dicentrarchus labrax). When tryptophan was supplemented in the diet of unstressed fish, it induced changes in the hypothalamic-pituitary-interrenal axis response to stress. Tryptophan-mediated effects were observed in the expression of anti-inflammatory cytokines and glucocorticoid receptors. Tryptophan supplementation decreased pro-opiomelanocortin b-like levels, that are related with adrenocorticotropic hormone and cortisol secretion. When stressed fish fed a tryptophan-supplemented diet were subjected to an inflammatory stimulus, plasma cortisol levels decreased and the expression of genes involved in the neuroendocrine response was altered. Modulatory effects of tryptophan dietary intervention on molecular patterns seem to be mediated by altered patterns in serotonergic activity.


Asunto(s)
Hidrocortisona , Triptófano , Animales , Triptófano/metabolismo , Suplementos Dietéticos , Inflamación/genética , Dieta
2.
Fish Shellfish Immunol ; 147: 109431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346567

RESUMEN

Paracentrotus lividus is the most abundant echinoid species in the North East Atlantic Ocean and Mediterranean Sea. Although there is abundant genomic information of the species, there is no deep characterisation of the genes involved in the immune response. Here, a reference transcriptome of male and female coelomocytes was produced. The generated P. lividus transcriptome assembly has 203,511 transcripts, N50 transcript length of 1079 bp, and more than 90% estimated gene completeness in Eukaryota and Metazoa BUSCO databases, respectively. Differential gene expression analyses showed 54 and 55 up-regulated genes in P. lividus female and male coelomocyte tissues, respectively. These results suggest a similar immune gene repertoire between sexes. To examine the immune response, P. lividus was challenged with Vibrio anguillarum, one of the candidate pathogens for bald disease. Immune parameters were evaluated at cell and humoral levels, as well as the expression analysis of immune related genes at an early response stage. No differences were found at cellular and humoral levels with the exception of the increase of nitric oxide in perivisceral fluid of challenged animals. At the gene expression level, a total of 2721 genes were upregulated in challenged animals, 13.6 times higher expression than control group. Our analysis revealed that four major KEGG pathways were enriched in challenged animals: Autophagy (KEGG:04140), Endocytosis (KEGG:04144), Phagosome (KEGG:04145) and Protein processing in endoplasmic reticulum (KEGG:04141). Several toll-like receptors (TLR), scavenger receptors cysteine-rich (SRCR) or nucleotide-binding oligomerisation domain like receptors (NLR) were identified as major family genes for pathogen recognition and immune defence. This study provides a valuable transcriptomic resource and unfolds the molecular basis of immune response to V. anguillarum exposure. Overall, our findings contribute to the conservation effort of the P. lividus populations, as well as its sustainable exploitation in an aquaculture context.


Asunto(s)
Paracentrotus , Vibrio , Femenino , Masculino , Animales , Vibrio/fisiología , Fagocitosis , Receptores Toll-Like
3.
PLOS Digit Health ; 3(1): e0000181, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190369

RESUMEN

Social media is increasingly used to engage persons with lived experience and healthcare professionals in research, however, there remains sparse guidance on how to effectively use social media to engage these groups in research agenda-setting. Here we report our process and experience utilizing a social media campaign to engage Canadians within the pediatric cancer community in a research priority-setting exercise. Following the James Lind Alliance method, we launched a priority-setting partnership (PSP) to develop a child with cancer-, survivor-, family member-, and healthcare professional-based Canadian pediatric cancer research agenda. Social media-based strategies were implemented to recruit participants for two PSP surveys, including preparatory activities, developing a website, launching graphics and advertisements, and engaging internal and external networks. Descriptive statistics of our data and analytics provided by the platforms are used presently to report our process. The framework we implemented involved preparing for social media use, identifying a target audience, developing campaign content, conducting the campaign, refining the campaign as needed, and evaluating its success. Our process resulted in a substantial social media-based reach, good survey completion rates, and a successfully developed pediatric cancer community-specified research agenda. Social media may represent a useful approach to engage persons with lived experience and healthcare professionals in research agenda development. Based on our experience, we present strategies to increase social media campaign engagement that may be useful to those seeking to conduct health research priority-setting exercises.

4.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629124

RESUMEN

Turbot aquaculture production is an important economic activity in several countries around the world; nonetheless, the incidence of diseases, such furunculosis, caused by the etiological agent A. salmonicida subsp. salmonicida, is responsible for important losses to this industry worldwide. Given this perspective, this study aimed to evaluate early immune responses in turbot (S. maximus L.) following infection with A. salmonicida subsp. salmonicida. For this, 72 fish were individually weighed and randomly distributed into 6 tanks in a circulating seawater system. For the bacterial challenge, half of the individuals (3 tanks with 36 individuals) were infected using a peritoneal injection with the bacterial suspension, while the other half of individuals were injected with PBS and kept as a control group. Several factors linked to the innate immune response were studied, including not only haematological (white blood cells, red blood cells, haematocrit, haemoglobin, mean corpuscular volume, mean cell haemoglobin, mean corpuscular haemoglobin concentration, neutrophils, monocytes, lymphocytes, thrombocytes) and oxidative stress parameters, but also the analyses of the expression of 13 key immune-related genes (tnf-α, il-1ß, il-8, pparα-1, acox1, tgf-ß1, nf-kB p65, srebp-1, il-10, c3, cpt1a, pcna, il-22). No significant differences were recorded in blood or innate humoral parameters (lysozyme, anti-protease, peroxidase) at the selected sampling points. There was neither any evidence of significant changes in the activity levels of the oxidative stress indicators (catalase, glutathione S-transferase, lipid peroxidation, superoxide dismutase). In contrast, pro-inflammatory (tnf-α, il-1ß), anti-inflammatory (il-10), and innate immune-related genes (c3) were up-regulated, while another gene linked with the lipid metabolism (acox1) was down-regulated. The results showed new insights about early responses of turbot following infection with A. salmonicida subsp. salmonicida.


Asunto(s)
Peces Planos , Animales , Inmunidad Innata , Interleucina-10 , Factor de Necrosis Tumoral alfa
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293344

RESUMEN

The present work aimed to study the role of dietary tryptophan supplementation in modulating the European seabass (Dicentrarchus labrax) immune condition during stressful rearing conditions (i.e., 15 days exposure to high density), as well as the immune response to acute inflammation after intraperitoneal injection of a bacterial pathogen. Stress alone did not compromise seabass health indicators. In contrast, a clear peripheral and local inflammatory response was observed in response to the inoculated bacteria. Moreover, exposure to a high stocking density seemed to exacerbate the inflammatory response at early sampling points, compared to fish stocked at a lower density. In contrast, stressed fish presented some immune-suppressing effects on the T-cell surface glycoprotein receptor expressions at a late sampling point following inflammation. Regarding the effects of dietary tryptophan, no changes were observed on seabass immune indicators prior to inflammation, while a small number of immunosuppressive effects were observed in response to inflammation, supporting tryptophan's role in the promotion of immune-tolerance signals during inflammation. Nonetheless, tryptophan dietary supplementation improved the inflammatory response against a bacterial pathogen during stressful conditions, supported by a reduction of plasma cortisol levels, an up-regulation of several immune-related genes at 48 h, and an inversion of the previously observed, stress-induced T-cell suppression. Finally, the involvement of tryptophan catabolism in macrophages was confirmed by the up-regulation of genes involved in the kynurenine pathway. The present study brings new insights regarding the immune modulatory role of tryptophan during stressful conditions in fish, thus allowing for the development of novel prophylactic protocols during vaccination by intraperitoneal injection in the European seabass.


Asunto(s)
Lubina , Animales , Lubina/genética , Triptófano/metabolismo , Alimentación Animal/análisis , Hidrocortisona/metabolismo , Quinurenina/metabolismo , Resistencia a la Enfermedad , Inflamación , Glicoproteínas de Membrana/metabolismo
6.
Animals (Basel) ; 12(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35565636

RESUMEN

Aquaculture has been challenged to find alternative ingredients to develop innovative feed formulations that foster a sustainable future growth. Given the most recent trends in fish feed formulation on the use of alternative protein sources to decrease the dependency of fishmeal, it is fundamental to evaluate the implications of this new paradigm for fish health and welfare. This work intends to comprehensively review the impacts of alternative and novel dietary protein sources on fish gut microbiota and health, stress and immune responses, disease resistance, and antioxidant capacity. The research results indicate that alternative protein sources, such as terrestrial plant proteins, rendered animal by-products, insect meals, micro- and macroalgae, and single cell proteins (e.g., yeasts), may negatively impact gut microbiota and health, thus affecting immune and stress responses. Nevertheless, some of the novel protein sources, such as insects and algae meals, have functional properties and may exert an immunostimulatory activity. Further research on the effects of novel protein sources, beyond growth, is clearly needed. The information gathered here is of utmost importance, in order to develop innovative diets that guarantee the production of healthy fish with high quality standards and optimised welfare conditions, thus contributing to a sustainable growth of the aquaculture industry.

7.
Biology (Basel) ; 11(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35625492

RESUMEN

Stress-inducing husbandry and rearing conditions, bacterial infections or parasitic diseases may all lead to chronic inflammation. The immune response will then channel energy away from growth, reproduction and other important physiological processes, to fuel immune-related metabolic responses. The present study aims to unravel the mechanisms and contribute with new information on the molecular, cellular and humoral parameters of European seabass (Dicentrarchus labrax) undergoing chronic inflammation that can be used as health indicators for application in fish health management. European seabass individuals were intra-peritoneally injected with either Freund's Incomplete Adjuvant (FIA) to induce inflammation or Hanks Balanced Salt Solution (HBSS) to serve as sham. Fish were sampled at 24 h, 7, 14 and 21 days post-injection and blood, plasma and head-kidney were collected. The results found were clear indicators of an inflamed peritoneal cavity and an ongoing systemic immune response that persisted for at least 21 days. Locally, inflammation was characterized by an intense recruitment of immune cells that was still evident 21 days after injection, thus illustrating the chronic character of the immune response. Cellular response was also noticed peripherally with leukocyte numbers rising in the blood of FIA-injected fish. Furthermore, the cellular-mediated respiratory burst peaked at 21 days post-FIA injection, suggesting that phagocytes were still actively fighting the phlogistic agent. Regarding the head-kidney molecular analysis, cxcr4 and il34 appear to be good markers of a chronic inflammation response due to their importance for pathways with high relevance in chronic inflammation settings. In addition, opioid receptor nopr seems to be a good marker of a chronic inflammation response due to its role in detecting noxious stimuli. The present study can serve as a baseline to assess long-term immune-related responses in future studies. For that, more research is nonetheless required to select more responsive and specific molecular markers.

8.
Biology (Basel) ; 11(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35336737

RESUMEN

In fish, as observed in mammals, any stressful event affects the immune system to a larger or shorter extent. The neuroendocrine-immune axis is a bi-directional network of mobile compounds and their receptors that are shared between both systems (neuroendocrine and immune) and that regulate their respective responses. However, how and to what extent immunity modulates the neuroendocrine system is not yet fully elucidated. This study was carried out to understand better central gene expression response patterns in a high-valued farmed fish species to an acute peripheral inflammation, focusing on genes related to the hypothalamus-pituitary-interrenal axis and the opioid system. European seabass, Dicentrarchus labrax, were intra-peritoneally injected with either Freund's Incomplete Adjuvant to induce a local inflammatory response or Hanks Balances Salt Solution to serve as the control. An undisturbed group was also included to take into account the effects due to handling procedures. To evaluate the outcomes of an acute immune response, fish were sampled at 4, 24, 48, and 72 h post-injection. The brain was sampled and dissected for isolation of different regions: telencephalon, optic tectum, hypothalamus, and pituitary gland. The expression of several genes related to the neuroendocrine response was measured by real-time PCR. Data were statistically analyzed by ANOVA and discriminant analyses to obtain these genes' responsiveness for the different brain regions. Serotonergic receptors were upregulated in the telencephalon, whereas the optic tectum inhibited these transcription genes. The hypothalamus showed a somewhat delayed response in which serotonin and glucocorticoid receptors were concerned. Still, the hypothalamic corticotropin-releasing hormone played an important role in differentiating fish undergoing an inflammatory response from those not under such conditions. Opioid receptors gene expression increased in both the hypothalamus and the telencephalon, while in the optic tectum, most were downregulated. However, no changes in the pituitary gland were observed. The different brain regions under immune stimulation demonstrated clear, distinct responses regarding gene transcription rates as well as the time period needed for the effect to occur. Further, more integrative studies are required to associate functions to the evaluated genes more safely and better understand the triggering mechanisms.

9.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328519

RESUMEN

Currently, aquaculture production of rainbow trout (Oncorhynchus mykiss) is a multibillion dollar industry; nevertheless, the development of this sector has not been exempt from pitfalls related to the recurrent presence of pathogens of bacterial origin. This is the case of Yersinia ruckeri, the etiologic agent of the infectious pathology known as Enteric Red Mouth Disease (ERM), causing serious economic losses that can be as high as 30-70% of production. Although several studies have been performed regarding pathogen features and virulence factors, more information is needed about the host defense mechanism activation after infection. Given this perspective, this study aimed to evaluate rainbow trout's short-term innate immune response against infection with Y. ruckeri. A series of factors linked to the innate immune response were evaluated, including determination of hematological parameters, oxidative stress biomarkers, and analysis of the expression of immune-related genes. Results showed a significant decrease in several hematological parameters (white blood cell count, hematocrit, neutrophils, monocytes, lymphocytes, and thrombocytes) and oxidative stress indicators (SOD) between the control and infected groups. In addition, there were significant differences in the level of gene expression between infected individuals and the control group. Most of these genes (il-1ß, il-8, il-10, tnf-α1, tnf-α2, socs3, mmp-9, cath, hsp-70, saa, fer, pcb) were upregulated within the first 24 h following infection. Results from this study showed more insights into the short-term immune response of rainbow trout to infection with Y. ruckeri, which may be useful for the establishment of biomarkers that may be used for the early detection of ERM.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Yersiniosis , Animales , Inmunidad Innata , Oncorhynchus mykiss/genética , Yersiniosis/veterinaria , Yersinia ruckeri/genética
10.
Fish Shellfish Immunol ; 106: 451-463, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32800985

RESUMEN

The present study was designed to determine the modulatory effects of arginine and citrulline dietary supplementation on the immune condition and inflammatory response of European seabass, Dicentrarchus labrax. Four diets were manufactured: a control diet (CTRL) was formulated to meet the indispensable amino acids profile established for seabass. Based on this formulation, three other diets were supplemented with l-arginine at two different levels (0.5% and 1%, ARG1 and ARG2, respectively) and l-citrulline at 0.5% (CIT). Fish were fed these diets for 2 or 4 weeks under controlled conditions. At the end of 4 weeks, fish from all dietary treatments were intraperitoneally-injected with Photobacterium damselae piscicida and sampled after 4, 24 our 48 h. Immune status was characterized by a lymphocyte time-dependent decrease regardless of dietary treatment, whereas peroxidase values dropped in time in fish fed ARG1 and ARG2 and was lower at 4 weeks in fish fed ARG1 than in fish fed CTRL. Up-regulation of several genes was more evident in ARG1-and CIT-fed fish, though pro-inflammatory cytokines were down-regulated by CIT dietary treatment. Following immune stimulation, seabass fed ARG1 showed a decrease in neutrophils and monocytes circulating numbers. On the other hand, expression of 17 selected immune and inflammatory responses genes was barely affected by dietary treatments. Based on the analyzed parameters, results suggest an active role of dietary arginine/citrulline supplementation in modulating immune defences that seem to translate into a suppressed immune repertoire, mostly at the cell response level. The observed changes due to citrulline dietary supplementation were in part similar to those caused by arginine, suggesting that citrulline might have been used by macrophages as an arginine precursor and then engaged in similar immune-impairment leading mechanisms.


Asunto(s)
Arginina/metabolismo , Lubina/inmunología , Citrulina/metabolismo , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata/efectos de los fármacos , Inflamación/veterinaria , Alimentación Animal/análisis , Animales , Arginina/administración & dosificación , Citrulina/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Infecciones por Bacterias Gramnegativas/prevención & control , Inflamación/inmunología , Photobacterium/fisiología , Distribución Aleatoria
11.
Front Immunol ; 11: 1544, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849522

RESUMEN

Several amino acids (AA) are known to regulate key metabolic pathways that are crucial for immune responses. In particular, arginine (ARG) appears to have important roles regarding immune modulation since it is required for macrophage responses and lymphocyte development. Moreover, citrulline (CIT) is a precursor of arginine, and it was reported as an alternative to ARG for improving macrophage function in mammals. The present study aimed to explore the effects of dietary ARG and CIT supplementation on the gilthead seabream (Sparus aurata) immune status. Triplicate groups of fish (23.1 ± 0.4 g) were either fed a control diet (CTRL) with a balanced AA profile, or the CTRL diet supplemented with graded levels of ARG or CIT (i.e., 0.5 and 1% of feed; ARG1, CIT1, ARG2, and CIT2, respectively). After 2 and 4 weeks of feeding, fish were euthanized and blood was collected for blood smears, plasma for humoral immune parameters and shotgun proteomics, and head-kidney tissue for the measurement of health-related transcripts. A total of 94 proteins were identified in the plasma of all treatments. Among them, components of the complement system, apolipoproteins, as well as some glycoproteins were found to be highly abundant. After performing a PLS of the expressed proteins, differences between the two sampling points were observed. In this regard, component 1 (61%) was correlated with the effect of sampling time, whereas component 2 (18%) seemed associated to individual variability within diet. Gilthead seabream fed ARG2 and CIT2 at 4 weeks were more distant than fish fed all dietary treatments at 2 weeks and fish fed the CTRL diet at 4 weeks. Therefore, data suggest that the modulatory effects of AA supplementation at the proteome level were more effective after 4 weeks of feeding and at the higher inclusion level (i.e., 1% of feed). The bactericidal activity increased in fish fed the highest supplementation level of both AAs after 4 weeks. Peripheral monocyte numbers correlated positively with nitric oxide, which showed an increasing trend in a dose-dependent manner. The colony-stimulating factor 1 receptor tended to be up-regulated at the final sampling point regardless of dietary treatments. Data from this study point to an immunostimulatory effect of dietary ARG or CIT supplementation after 4 weeks of feeding in the gilthead seabream, particularly when supplemented at a 1% inclusion level.


Asunto(s)
Arginina/metabolismo , Citrulina/metabolismo , Suplementos Dietéticos , Dorada/inmunología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biomarcadores/sangre , Perfilación de la Expresión Génica , Inmunidad Innata , Leucocitos/metabolismo , Proteoma , Proteómica/métodos , Dorada/sangre , Dorada/genética , Dorada/metabolismo
12.
Front Physiol ; 11: 26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32082190

RESUMEN

Increasing water CO2, aquatic hypercapnia, leads to higher physiological pCO2 levels in fish, resulting in an acidosis and compensatory acid-base regulatory response. Senegalese sole is currently farmed in super-intensive recirculating water systems where significant accumulation of CO2 in the water may occur. Moreover, anthropogenic releases of CO2 into the atmosphere are linked to ocean acidification. The present study was designed to assess the effects of acute (4 and 24 h) and prolonged exposure (4 weeks) to CO2 driven acidification (i.e., pH 7.9, 7.6, and 7.3) from normocapnic seawater (pH 8.1) on the innate immune status, gill acid-base ion transporter expression and metabolic rate of juvenile Senegalese sole. The acute exposure to severe hypercapnia clearly affected gill physiology as observed by an increase of NHE3b positive ionocytes and a decrease of cell shape factor. Nonetheless only small physiological adjustments were observed at the systemic level with (1) a modulation of both plasma and skin humoral parameters and (2) an increased expression of HIF-1 expression pointing to an adjustment to the acidic environment even after a short period (i.e., hours). On the other hand, upon prolonged exposure, the expression of several pro-inflammatory and stress related genes was amplified and gill cell shape factor was aggravated with the continued increase of NHE3b positive ionocytes, ultimately impacting fish growth. While these findings indicate limited effects on energy use, deteriorating immune system conditions suggest that Senegalese sole is vulnerable to changes in CO2 and may be affected in aquaculture where a pH drop is more prominent. Further studies are required to investigate how larval and adult Senegalese sole are affected by changes in CO2.

13.
Fish Shellfish Immunol ; 93: 240-250, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31310850

RESUMEN

European aquaculture is an industry with a high sustainability profile contributing to the supply of safe seafood. However, several diseases can affect farmed fish and it is imperative to find alternatives for chemotherapeutic treatments when disease outbreaks occur. Maintenance of health through nutrition is well-establish in modern animal farming, and amino acids (AA) are promising candidates as functional additives to improve fish health. Therefore, the goal of this research is to provide a better understanding of the influence of tryptophan supplementation on nutritional condition and immune mechanisms in fish. Triplicate groups of fish (13.3 ±â€¯0.3g) previously fed with a fishmeal-based diet were either fed a control diet with an extreme formulation (0% fishmeal) but meeting the AA requirements (CTRL), or the SUP diet, formulated as the CTRL with an increase in tryptophan (TRP) content. After 2 and 13 weeks of feeding, head-kidney (HK), liver (L) and white skeletal muscle (WSM) were collected for gene expression, whereas plasma was suited for humoral immune parameters. A holistic approach using transcriptomic, humoral and zootechnical parameters was undertaken. The expression of 29-31 genes for WSM, L or HK confirms an effect due to the treatment across time. A two-way ANOVA analysis revealed that 15-24 genes varied significantly depending on the tissue, and the multivariate analysis by means of PLS-DA explained (R2) and predicted (Q2) with four components up to 93% and 78% of total variance, respectively. Component 1 (R2 = 50.06%) represented the time effects, whereas components 2 (24.36%) and 3 (13.89%) grouped fish on the basis of dietary treatment, at early sampling. The HK results in particular suggest that fish fed SUP diet displayed an immunostimulated state at 2 weeks. No major differences were observed in plasma humoral parameters, despite an increase in antiprotease and peroxidase activities after 13 weeks regardless of dietary treatment. These results suggest that tryptophan supplementation may improve the seabream immune status after 2 weeks. Hence, the use of functional feeds is especially relevant during a short-term feeding period before a predictable stressful event or disease outbreak, considering that these putative advantageous effects seem to disappear after a 13 weeks feeding period.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Dorada/inmunología , Triptófano/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Distribución Aleatoria , Dorada/metabolismo , Factores de Tiempo , Triptófano/administración & dosificación
14.
Front Physiol ; 10: 508, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31118899

RESUMEN

High rearing densities are typical conditions of both inland and onshore intensive aquaculture units. Despite obvious drawbacks, this strategy is nonetheless used to increase production profits. Such conditions inflict stress on fish, reducing their ability to cope with disease, bringing producers to adopt therapeutic strategies. In an attempt to overcome deleterious effects of chronic stress, Senegalese sole, Solea senegalensis, held at low (LD) or high density (HD) were fed tryptophan-supplemented diets with final tryptophan content at two (TRP2) or four times (TRP4) the requirement level, as well as a control and non-supplemented diet (CTRL) for 38 days. Fish were sampled at the end of the feeding trial for evaluation of their immune status, and mortalities were recorded following intra-peritoneal infection with Photobacterium damselae subsp. piscicida. Blood was collected for analysis of the hematological profile and innate immune parameters in plasma. Pituitary and hypothalamus were sampled for the assessment of neuro-endocrine-related gene expression. During the feeding trial, fish fed TRP4 and held at LD conditions presented higher mortalities, whereas fish kept at HD seemed to benefit from this dietary treatment, as disease resistance increased over that of CTRL-fed fish. In accordance, cortisol level tended to be higher in fish fed both supplemented diets at LD compared to fish fed CTRL, but was lower in fish fed TRP4 than in those fed TRP2 under HD condition. Together with lower mRNA levels of proopiomelanocortin observed with both supplementation levels, these results suggest that higher levels of tryptophan might counteract stress-induced cortisol production, thereby rendering fish better prepared to cope with disease. Data regarding sole immune status showed no clear effects of tryptophan on leucocyte numbers, but TRP4-fed fish displayed inhibited alternative complement activity (ACH50) when held at LD, as opposed to their HD counterparts whose ACH50 was higher than that of CTRL-fed fish. In conclusion, while dietary tryptophan supplementation might have harmful effects in control fish, it might prove to be a promising strategy to overcome chronic stress-induced disease susceptibility in farmed Senegalese sole.

15.
Front Immunol ; 9: 2672, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524433

RESUMEN

Methionine presents a pivotal role in the regulation of many cellular events with crucial impact on the immune system, such as in processes involved in the control of inflammation and polyamines synthesis. Accordingly, the present study aimed to assess the modulatory effects of dietary methionine on the European seabass (Dicentrarchus labrax) immune status, inflammatory response and disease resistance to Photobacterium damselae subsp. piscicida (Phdp). For this purpose, fish were randomly distributed in three independent groups (three replicates per group) and each was fed the corresponding diet: a control diet (CTRL) formulated to meet the established amino acid requirements for the species; a diet supplemented with methionine at 0.5% of feed weight relative to the CTRL diet (8.2% of methionine concentration above CTRL); and one supplemented with methionine at 1% of feed weight to the CTRL diet (11.8% of methionine concentration above CTRL). To evaluate the immune status of fish fed with each of the diets before being submitted to bacterial infection fish were sampled from each group at 2 and 4 weeks after the beginning of feeding. Non-sampled fish were injected intraperitoneally with Phdp (5 × 103 cfu/fish) at 4 weeks after initiation of feeding and the inflammatory response (at 4, 24, and 48 h post-infection) and survival (lasting 21 days post-infection) evaluated. Fish hematological profile, peripheral cell dynamics, plasma humoral immune parameters, leucocyte migration to the inflammatory focus and head-kidney gene expression were evaluated. Results show that methionine dietary supplementation improves seabass cellular immune status without evidence of activation of pro-inflammatory mechanisms. Additionally, the observed enhanced immune status provided by methionine supplementation translated into an improved immune response to infection, as higher cellular differentiation/proliferation and recruitment to the inflammatory focus, improved plasma humoral immune parameters and modulation of key immune-related genes was observed. Lastly, after a bacterial challenge, higher survival was observed in fish fed supplemented diets, ultimately corroborating the positive effect of methionine administration for 4 weeks in the cellular immune status.


Asunto(s)
Alimentación Animal , Lubina/inmunología , Resistencia a la Enfermedad/efectos de los fármacos , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Metionina/farmacología , Photobacterium/inmunología , Animales , Lubina/microbiología
16.
Fish Shellfish Immunol ; 74: 260-267, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29325709

RESUMEN

Senegalese sole Solea senegalensis is currently farmed in recirculation aquaculture systems that often involve water re-oxygenation, which in turn may cause acute or prolonged hyperoxia exposures. In order to understand the impact of acute hyperoxia on the fish immune system and peripheral tissues such as gills and gut, Senegalese sole juveniles (30.05 ±â€¯1.72 g) were exposed to normoxia (100% O2sat) as control and two hyperoxic conditions (150 and 200% O2sat) and sampled at 4 and 24 h. Fish haematological profile, total and differential blood cell counts and plasma immune parameters were analysed. Histomorphology and immunofluorescence analyses of gills and intestine were performed, respectively, whereas head-kidney samples were used for assessing the expression of immune-related genes. Results indicate that acute hyperoxia exposure may reduce fish erythrocyte and haemoglobin levels. Moreover, decreases in total leucocytes numbers, circulating lymphocytes, monocytes, alternative complement pathway activity and expression of cyclooxygenase-2 were observed in fish exposed to hyperoxia. In contrast, hyperoxia did not induce major effects on gill histomorphology nor in the protein content of ion and glucose cotransporters as well as a macrophage marker (V-ATPase) in the intestine. Although the activation of humoral mechanisms and immune-related genes were not dramatically affected by acute hyperoxia, the compromised immune cell status and the reduction of some inflammatory indicators are issues to consider under acute hyperoxia conditions.


Asunto(s)
Peces Planos/inmunología , Inmunidad Innata , Oxígeno/análisis , Aerobiosis , Animales , Branquias/fisiología , Intestinos/fisiología
17.
Sci Rep ; 7(1): 18009, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269876

RESUMEN

Teleost innate immune system is a most developed and powerful system in which fish highly rely throughout their lives. Conditions in aquaculture farms are particularly prone to disease, thus, health and welfare ensuring strategies are an urgent call to which nutrition is gradually becoming a most regarded achievement tool. This study intended to evaluate different amino acids' effect on immune-related mechanisms as well as their potential as enhancers of European seabass, Dicentrarchus labrax, leucocyte functioning. To achieve these goals, primary cultures of head-kidney leucocytes were established and kept in amino acid (glutamine, arginine, tryptophan or methionine) supplemented culture media in two doses. The effects of amino acids treatments were then evaluated after stimulation with either Vibrio anguillarum or Vibrio anguillarum lipopolysaccharides by measuring nitric oxide production, extracellular respiratory burst, ATP and arginase activities, and expression of immune-related genes. Glutamine, arginine and tryptophan showed to be particularly relevant regarding cell energy dynamics; arginine and tryptophan supplementation also resulted in down-regulation of important immune-related genes. Immune responses in cells treated with methionine were generally enhanced but further studies, particularly those of enzymes activity, are essential to complement gene expression results and to better understand this nutrient's immune role in fish.


Asunto(s)
Aminoácidos/administración & dosificación , Lubina/inmunología , Inmunidad Innata/efectos de los fármacos , Leucocitos/efectos de los fármacos , Óxido Nítrico/metabolismo , Vibriosis/inmunología , Animales , Medios de Cultivo , Leucocitos/inmunología , Leucocitos/metabolismo , Vibrio
18.
Front Immunol ; 8: 1226, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021795

RESUMEN

Methionine and tryptophan appear to be fundamental in specific cellular pathways involved in the immune response mechanisms, including stimulation of T-regulatory cells by tryptophan metabolites or pro-inflammatory effects upon methionine supplementation. Thus, the aim of this study was to evaluate the immunomodulatory effect of these amino acids on the inflammatory and neuroendocrine responses in juveniles of European seabass, Dicentrarchus labrax. To achieve this, goal fish were fed for 14 days methionine and tryptophan-supplemented diets (MET and TRP, respectively, 2× dietary requirement level) or a control diet meeting the amino acids requirement levels (CTRL). Fish were sampled for immune status assessment and the remaining fish were challenged with intraperitoneally injected inactivated Photobacterium damselae subsp. piscicida and sampled either 4 or 24 h post-injection. Respiratory burst activity, brain monoamines, plasma cortisol, and immune-related gene expression showed distinct and sometimes opposite patterns regarding the effects of dietary amino acids. While neuroendocrine intermediates were not affected by any dietary treatment at the end of the feeding trial, both supplemented diets led to increased levels of plasma cortisol after the inflammatory insult, while brain monoamine content was higher in TRP-fed fish. Peripheral blood respiratory burst was higher in TRP-fed fish injected with the bacteria inoculum but only compared to those fed MET. However, no changes were detected in total antioxidant capacity. Complement factor 3 was upregulated in MET-fed fish but methionine seemed to poorly affect other genes expression patterns. In contrast, fish fed MET showed increased immune cells numbers both before and after immune challenge, suggesting a strong enhancing effect of methionine on immune cells proliferation. Differently, tryptophan effects on inflammatory transcripts suggested an inhibitory mode of action. This, together with a high production of brain monoamine and cortisol levels, suggests that tryptophan might mediate regulatory mechanisms of neuroendocrine and immune systems cooperation. Overall, more studies are needed to ascertain the role of methionine and tryptophan in modulating (stimulate or regulate) fish immune and neuroendocrine responses.

19.
Fish Shellfish Immunol ; 60: 78-87, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27836721

RESUMEN

Inclusion of prebiotics in aqua feeds, though a costly strategy, has increased as a means to improve growth. Still, its effects on health improvement are not fully disclosed. Regarding their immunestimulatory properties, research has focused on carbohydrates such as fructooligosaccharides and xylooligosaccharides demonstrating their modulatory effects on immune defences in higher vertebrates but few studies have been done on their impact on fish immunity. Replacing fish meal (FM) by plant protein (PP) sources is a current practice in the aquaculture business but their content in antinutrients is still a drawback in terms of gut well-functioning. This work intends to evaluate the short-term effect (7 or 15 days feeding the experimental diets) on juvenile European seabass (Dicentrarchus labrax) immune status of dietary i) replacement of FM by PP sources; ii) prebiotics supplementation. Six isoproteic (46%) and isolipidic (15%) diets were tested including a FM control diet (FMCTRL), a PP control diet (PPCTRL, 30 FM:70 PP) and four other diets based on either FM or PP to which short-chain fructooligosaccharides (scFOS) or xylooligosaccharides (XOS) were added at 1% (FMFOS, PPFOS, FMXOS, PPXOS). The replacement of FM by PP in the diets induced nitric oxide (NO) and lysozyme production, while immunoglobulins (Ig), monocytes percentage and gut interleukin 10 (IL10) gene expression were inhibited. Dietary scFOS supplementation inhibited total bactericidal activity and neutrophils relative percentage regardless protein source and increased plasma NO and thrombocytes percentage in fish fed FM-based diets, while monocytes percentage was increased in PPFOS-fed fish. XOS supplementation down-regulated immune gene expression in the gut while it partly enhanced systemic response. Inconsistency among results regarding FM replacement by PP-based ingredients exposes the need for further research considering both local and systemic responses. Distinct outcomes of prebiotic supplementation were highlighted reflecting sight-specific effects with no clear interaction with protein source.


Asunto(s)
Lubina/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Tracto Gastrointestinal/fisiología , Inmunidad Innata , Proteínas de Vegetales Comestibles , Prebióticos , Alimentación Animal/análisis , Animales , Bacterias/efectos de los fármacos , Lubina/inmunología , Tracto Gastrointestinal/inmunología , Oligosacáridos/inmunología , Proteínas de Vegetales Comestibles/inmunología
20.
PLoS One ; 10(10): e0139967, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26447480

RESUMEN

Infectious diseases and fish feeds management are probably the major expenses in the aquaculture business. Hence, it is a priority to define sustainable strategies which simultaneously avoid therapeutic procedures and reinforce fish immunity. Currently, one preferred approach is the use of immunostimulants which can be supplemented to the fish diets. Arginine is a versatile amino acid with important mechanisms closely related to the immune response. Aiming at finding out how arginine affects the innate immune status or improve disease resistance of European seabass (Dicentrarchus labrax) against vibriosis, fish were fed two arginine-supplemented diets (1% and 2% arginine supplementation). A third diet meeting arginine requirement level for seabass served as control diet. Following 15 or 29 days of feeding, fish were sampled for blood, spleen and gut to assess cell-mediated immune parameters and immune-related gene expression. At the same time, fish from each dietary group were challenged against Vibrio anguillarum and survival was monitored. Cell-mediated immune parameters such as the extracellular superoxide and nitric oxide decreased in fish fed arginine-supplemented diets. Interleukins and immune-cell marker transcripts were down-regulated by the highest supplementation level. Disease resistance data were in accordance with a generally depressed immune status, with increased susceptibility to vibriosis in fish fed arginine supplemented diets. Altogether, these results suggest a general inhibitory effect of arginine on the immune defences and disease resistance of European seabass. Still, further research will certainly clarify arginine immunomodulation pathways thereby allowing the validation of its potential as a prophylactic strategy.


Asunto(s)
Arginina/farmacología , Lubina/metabolismo , Inmunidad Humoral/efectos de los fármacos , Animales , Arginasa/genética , Arginasa/metabolismo , Arginina/metabolismo , Lubina/inmunología , Dieta/veterinaria , Suplementos Dietéticos , Resistencia a la Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Interleucinas/genética , Interleucinas/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Vibriosis/inmunología , Vibriosis/mortalidad , Vibriosis/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...